MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. C53800 Bronze

S15500 stainless steel belongs to the iron alloys classification, while C53800 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is C53800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 6.8 to 16
2.3
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
40
Shear Strength, MPa 540 to 870
470
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
830
Tensile Strength: Yield (Proof), MPa 590 to 1310
660

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 820
160
Melting Completion (Liquidus), °C 1430
980
Melting Onset (Solidus), °C 1380
800
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 17
61
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
37
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.7
3.9
Embodied Energy, MJ/kg 39
64
Embodied Water, L/kg 130
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
18
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
2020
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32 to 53
26
Strength to Weight: Bending, points 26 to 37
22
Thermal Diffusivity, mm2/s 4.6
19
Thermal Shock Resistance, points 30 to 50
31

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
85.1 to 86.5
Iron (Fe), % 71.9 to 79.9
0 to 0.030
Lead (Pb), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 1.0
0 to 0.060
Nickel (Ni), % 3.5 to 5.5
0 to 0.030
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
13.1 to 13.9
Zinc (Zn), % 0
0 to 0.12
Residuals, % 0
0 to 0.2