MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. C72700 Copper-nickel

S15500 stainless steel belongs to the iron alloys classification, while C72700 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 6.8 to 16
4.0 to 36
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
44
Shear Strength, MPa 540 to 870
310 to 620
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
460 to 1070
Tensile Strength: Yield (Proof), MPa 590 to 1310
580 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 820
200
Melting Completion (Liquidus), °C 1430
1100
Melting Onset (Solidus), °C 1380
930
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
54
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
11

Otherwise Unclassified Properties

Base Metal Price, % relative 13
36
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.7
4.0
Embodied Energy, MJ/kg 39
62
Embodied Water, L/kg 130
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
20 to 380
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
1420 to 4770
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32 to 53
14 to 34
Strength to Weight: Bending, points 26 to 37
15 to 26
Thermal Diffusivity, mm2/s 4.6
16
Thermal Shock Resistance, points 30 to 50
16 to 38

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
82.1 to 86
Iron (Fe), % 71.9 to 79.9
0 to 0.5
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0 to 1.0
0.050 to 0.3
Nickel (Ni), % 3.5 to 5.5
8.5 to 9.5
Niobium (Nb), % 0.15 to 0.45
0 to 0.1
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.3