MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. C93800 Bronze

S15500 stainless steel belongs to the iron alloys classification, while C93800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is C93800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
96
Elongation at Break, % 6.8 to 16
9.7
Poisson's Ratio 0.28
0.35
Shear Modulus, GPa 75
35
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
200
Tensile Strength: Yield (Proof), MPa 590 to 1310
120

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 820
140
Melting Completion (Liquidus), °C 1430
940
Melting Onset (Solidus), °C 1380
850
Specific Heat Capacity, J/kg-K 480
340
Thermal Conductivity, W/m-K 17
52
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
11

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.8
9.1
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 39
51
Embodied Water, L/kg 130
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
17
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
70
Stiffness to Weight: Axial, points 14
5.9
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 32 to 53
6.1
Strength to Weight: Bending, points 26 to 37
8.4
Thermal Diffusivity, mm2/s 4.6
17
Thermal Shock Resistance, points 30 to 50
8.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
75 to 79
Iron (Fe), % 71.9 to 79.9
0 to 0.15
Lead (Pb), % 0
13 to 16
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.5 to 5.5
0 to 1.0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
6.3 to 7.5
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 1.0