MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. C94800 Bronze

S15500 stainless steel belongs to the iron alloys classification, while C94800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is C94800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 6.8 to 16
22
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
43
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
310
Tensile Strength: Yield (Proof), MPa 590 to 1310
160

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 820
190
Melting Completion (Liquidus), °C 1430
1030
Melting Onset (Solidus), °C 1380
900
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 17
39
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
12

Otherwise Unclassified Properties

Base Metal Price, % relative 13
34
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.7
3.5
Embodied Energy, MJ/kg 39
56
Embodied Water, L/kg 130
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
58
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
110
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 32 to 53
9.8
Strength to Weight: Bending, points 26 to 37
12
Thermal Diffusivity, mm2/s 4.6
12
Thermal Shock Resistance, points 30 to 50
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
84 to 89
Iron (Fe), % 71.9 to 79.9
0 to 0.25
Lead (Pb), % 0
0.3 to 1.0
Manganese (Mn), % 0 to 1.0
0 to 0.2
Nickel (Ni), % 3.5 to 5.5
4.5 to 6.0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Zinc (Zn), % 0
1.0 to 2.5
Residuals, % 0
0 to 1.3