MakeItFrom.com
Menu (ESC)

S15500 Stainless Steel vs. C95300 Bronze

S15500 stainless steel belongs to the iron alloys classification, while C95300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S15500 stainless steel and the bottom bar is C95300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 290 to 430
120 to 170
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 6.8 to 16
14 to 25
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 75
42
Tensile Strength: Ultimate (UTS), MPa 890 to 1490
520 to 610
Tensile Strength: Yield (Proof), MPa 590 to 1310
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 820
220
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1380
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 17
63
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 13
28
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 39
52
Embodied Water, L/kg 130
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 120
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 890 to 4460
170 to 420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32 to 53
17 to 21
Strength to Weight: Bending, points 26 to 37
17 to 19
Thermal Diffusivity, mm2/s 4.6
17
Thermal Shock Resistance, points 30 to 50
19 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
9.0 to 11
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 14 to 15.5
0
Copper (Cu), % 2.5 to 4.5
86.5 to 90.2
Iron (Fe), % 71.9 to 79.9
0.8 to 1.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.5 to 5.5
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 1.0