MakeItFrom.com
Menu (ESC)

S15700 Stainless Steel vs. EN 1.0255 Steel

Both S15700 stainless steel and EN 1.0255 steel are iron alloys. They have 74% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S15700 stainless steel and the bottom bar is EN 1.0255 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200 to 460
120
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 1.1 to 29
27
Fatigue Strength, MPa 370 to 770
180
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 770 to 1070
280
Tensile Strength: Ultimate (UTS), MPa 1180 to 1890
430
Tensile Strength: Yield (Proof), MPa 500 to 1770
250

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 870
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
40
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 15
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.5
Embodied Energy, MJ/kg 47
19
Embodied Water, L/kg 140
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 270
100
Resilience: Unit (Modulus of Resilience), kJ/m3 640 to 4660
160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 42 to 67
15
Strength to Weight: Bending, points 32 to 43
16
Thermal Diffusivity, mm2/s 4.2
11
Thermal Shock Resistance, points 39 to 63
14

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
0.020 to 0.2
Carbon (C), % 0 to 0.090
0 to 0.16
Chromium (Cr), % 14 to 16
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 69.6 to 76.8
94.1 to 99.98
Manganese (Mn), % 0 to 1.0
0 to 1.2
Molybdenum (Mo), % 2.0 to 3.0
0 to 0.080
Nickel (Ni), % 6.5 to 7.7
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020