MakeItFrom.com
Menu (ESC)

S15700 Stainless Steel vs. C23000 Brass

S15700 stainless steel belongs to the iron alloys classification, while C23000 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S15700 stainless steel and the bottom bar is C23000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 1.1 to 29
2.9 to 47
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Shear Strength, MPa 770 to 1070
220 to 340
Tensile Strength: Ultimate (UTS), MPa 1180 to 1890
280 to 590
Tensile Strength: Yield (Proof), MPa 500 to 1770
83 to 480

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 870
170
Melting Completion (Liquidus), °C 1440
1030
Melting Onset (Solidus), °C 1400
990
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 16
160
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
39

Otherwise Unclassified Properties

Base Metal Price, % relative 15
28
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 3.4
2.6
Embodied Energy, MJ/kg 47
43
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 17 to 270
6.2 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 640 to 4660
31 to 1040
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 42 to 67
8.9 to 19
Strength to Weight: Bending, points 32 to 43
11 to 18
Thermal Diffusivity, mm2/s 4.2
48
Thermal Shock Resistance, points 39 to 63
9.4 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.75 to 1.5
0
Carbon (C), % 0 to 0.090
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 0
84 to 86
Iron (Fe), % 69.6 to 76.8
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 6.5 to 7.7
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
13.7 to 16
Residuals, % 0
0 to 0.2