MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. ASTM A356 Grade 5

Both S17400 stainless steel and ASTM A356 grade 5 are iron alloys. They have 76% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is ASTM A356 grade 5.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 440
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 21
25
Fatigue Strength, MPa 380 to 670
230
Poisson's Ratio 0.28
0.29
Reduction in Area, % 40 to 62
39
Shear Modulus, GPa 75
73
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
550
Tensile Strength: Yield (Proof), MPa 580 to 1250
310

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 850
420
Melting Completion (Liquidus), °C 1440
1470
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
49
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 14
2.6
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.5
Embodied Energy, MJ/kg 39
20
Embodied Water, L/kg 130
49

Common Calculations

PREN (Pitting Resistance) 16
2.2
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
120
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
250
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32 to 49
20
Strength to Weight: Bending, points 27 to 35
19
Thermal Diffusivity, mm2/s 4.5
13
Thermal Shock Resistance, points 30 to 46
16

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.25
Chromium (Cr), % 15 to 17
0.4 to 0.7
Copper (Cu), % 3.0 to 5.0
0
Iron (Fe), % 70.4 to 78.9
97.1 to 99.2
Manganese (Mn), % 0 to 1.0
0 to 0.7
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 3.0 to 5.0
0
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.030