MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. EN 1.4423 Stainless Steel

Both S17400 stainless steel and EN 1.4423 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is EN 1.4423 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 21
17
Fatigue Strength, MPa 380 to 670
380
Impact Strength: V-Notched Charpy, J 7.6 to 86
110
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
77
Shear Strength, MPa 570 to 830
520
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
850
Tensile Strength: Yield (Proof), MPa 580 to 1250
630

Thermal Properties

Latent Heat of Fusion, J/g 280
280
Maximum Temperature: Corrosion, °C 450
390
Maximum Temperature: Mechanical, °C 850
780
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
16
Thermal Expansion, µm/m-K 11
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 14
14
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 39
43
Embodied Water, L/kg 130
120

Common Calculations

PREN (Pitting Resistance) 16
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
130
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
1000
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32 to 49
30
Strength to Weight: Bending, points 27 to 35
25
Thermal Diffusivity, mm2/s 4.5
4.3
Thermal Shock Resistance, points 30 to 46
31

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.020
Chromium (Cr), % 15 to 17
11 to 13
Copper (Cu), % 3.0 to 5.0
0.2 to 0.8
Iron (Fe), % 70.4 to 78.9
73.8 to 80.5
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
2.3 to 2.8
Nickel (Ni), % 3.0 to 5.0
6.0 to 7.0
Niobium (Nb), % 0.15 to 0.45
0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.0030