MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. EN 1.4424 Stainless Steel

Both S17400 stainless steel and EN 1.4424 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is EN 1.4424 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 440
230
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 11 to 21
28
Fatigue Strength, MPa 380 to 670
350 to 370
Impact Strength: V-Notched Charpy, J 7.6 to 86
90 to 91
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 75
78
Shear Strength, MPa 570 to 830
520
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
800
Tensile Strength: Yield (Proof), MPa 580 to 1250
480 to 500

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 450
420
Maximum Temperature: Mechanical, °C 850
960
Melting Completion (Liquidus), °C 1440
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
13
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 14
15
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.4
Embodied Energy, MJ/kg 39
46
Embodied Water, L/kg 130
140

Common Calculations

PREN (Pitting Resistance) 16
29
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
580 to 640
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 32 to 49
29
Strength to Weight: Bending, points 27 to 35
25
Thermal Diffusivity, mm2/s 4.5
3.5
Thermal Shock Resistance, points 30 to 46
23

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.030
Chromium (Cr), % 15 to 17
18 to 19
Copper (Cu), % 3.0 to 5.0
0
Iron (Fe), % 70.4 to 78.9
68.6 to 72.4
Manganese (Mn), % 0 to 1.0
1.2 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.0
Nickel (Ni), % 3.0 to 5.0
4.5 to 5.2
Niobium (Nb), % 0.15 to 0.45
0
Nitrogen (N), % 0
0.050 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
1.4 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.015