MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. EN 1.4592 Stainless Steel

Both S17400 stainless steel and EN 1.4592 stainless steel are iron alloys. They have 83% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is EN 1.4592 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 11 to 21
23
Fatigue Strength, MPa 380 to 670
340
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 75
82
Shear Strength, MPa 570 to 830
400
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
630
Tensile Strength: Yield (Proof), MPa 580 to 1250
500

Thermal Properties

Latent Heat of Fusion, J/g 280
310
Maximum Temperature: Corrosion, °C 450
550
Maximum Temperature: Mechanical, °C 850
1100
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 17
17
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 14
18
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.8
Embodied Energy, MJ/kg 39
52
Embodied Water, L/kg 130
180

Common Calculations

PREN (Pitting Resistance) 16
43
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
130
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
610
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
26
Strength to Weight: Axial, points 32 to 49
23
Strength to Weight: Bending, points 27 to 35
21
Thermal Diffusivity, mm2/s 4.5
4.6
Thermal Shock Resistance, points 30 to 46
20

Alloy Composition

Carbon (C), % 0 to 0.070
0 to 0.025
Chromium (Cr), % 15 to 17
28 to 30
Copper (Cu), % 3.0 to 5.0
0
Iron (Fe), % 70.4 to 78.9
62.6 to 68.4
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 3.0 to 5.0
0
Niobium (Nb), % 0.15 to 0.45
0
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0.15 to 0.8