MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. EN 1.6958 Steel

Both S17400 stainless steel and EN 1.6958 steel are iron alloys. They have 80% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is EN 1.6958 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 440
340
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 11 to 21
16
Fatigue Strength, MPa 380 to 670
700
Impact Strength: V-Notched Charpy, J 7.6 to 86
63
Poisson's Ratio 0.28
0.29
Reduction in Area, % 40 to 62
56
Shear Modulus, GPa 75
73
Shear Strength, MPa 570 to 830
700
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
1140
Tensile Strength: Yield (Proof), MPa 580 to 1250
1070

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 850
450
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
47
Thermal Expansion, µm/m-K 11
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 14
5.0
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 39
27
Embodied Water, L/kg 130
60

Common Calculations

PREN (Pitting Resistance) 16
2.9
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
180
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
3050
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32 to 49
40
Strength to Weight: Bending, points 27 to 35
31
Thermal Diffusivity, mm2/s 4.5
13
Thermal Shock Resistance, points 30 to 46
39

Alloy Composition

Aluminum (Al), % 0
0.0050 to 0.050
Carbon (C), % 0 to 0.070
0.25 to 0.3
Chromium (Cr), % 15 to 17
1.2 to 1.7
Copper (Cu), % 3.0 to 5.0
0
Iron (Fe), % 70.4 to 78.9
92.6 to 94.5
Manganese (Mn), % 0 to 1.0
0.2 to 0.5
Molybdenum (Mo), % 0
0.35 to 0.55
Nickel (Ni), % 3.0 to 5.0
3.3 to 3.8
Niobium (Nb), % 0.15 to 0.45
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0.15 to 0.3
Sulfur (S), % 0 to 0.030
0 to 0.015
Vanadium (V), % 0
0 to 0.12