MakeItFrom.com
Menu (ESC)

S17400 Stainless Steel vs. Grade 13 Titanium

S17400 stainless steel belongs to the iron alloys classification, while grade 13 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S17400 stainless steel and the bottom bar is grade 13 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 11 to 21
27
Fatigue Strength, MPa 380 to 670
140
Poisson's Ratio 0.28
0.32
Reduction in Area, % 40 to 62
34
Shear Modulus, GPa 75
41
Shear Strength, MPa 570 to 830
200
Tensile Strength: Ultimate (UTS), MPa 910 to 1390
310
Tensile Strength: Yield (Proof), MPa 580 to 1250
190

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 850
320
Melting Completion (Liquidus), °C 1440
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 17
22
Thermal Expansion, µm/m-K 11
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 14
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.7
32
Embodied Energy, MJ/kg 39
520
Embodied Water, L/kg 130
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 160
73
Resilience: Unit (Modulus of Resilience), kJ/m3 880 to 4060
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 32 to 49
19
Strength to Weight: Bending, points 27 to 35
22
Thermal Diffusivity, mm2/s 4.5
8.9
Thermal Shock Resistance, points 30 to 46
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.070
0 to 0.080
Chromium (Cr), % 15 to 17
0
Copper (Cu), % 3.0 to 5.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 70.4 to 78.9
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 3.0 to 5.0
0.4 to 0.6
Niobium (Nb), % 0.15 to 0.45
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.5 to 99.56
Residuals, % 0
0 to 0.4