MakeItFrom.com
Menu (ESC)

S17600 Stainless Steel vs. EN 1.4980 Stainless Steel

Both S17600 stainless steel and EN 1.4980 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S17600 stainless steel and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 8.6 to 11
17
Fatigue Strength, MPa 300 to 680
410
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
75
Shear Strength, MPa 560 to 880
630
Tensile Strength: Ultimate (UTS), MPa 940 to 1490
1030
Tensile Strength: Yield (Proof), MPa 580 to 1310
680

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 550
780
Maximum Temperature: Mechanical, °C 890
920
Melting Completion (Liquidus), °C 1430
1430
Melting Onset (Solidus), °C 1390
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
26
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.9
6.0
Embodied Energy, MJ/kg 42
87
Embodied Water, L/kg 130
170

Common Calculations

PREN (Pitting Resistance) 17
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
150
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4390
1180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 34 to 54
36
Strength to Weight: Bending, points 28 to 37
28
Thermal Diffusivity, mm2/s 4.1
3.5
Thermal Shock Resistance, points 31 to 50
22

Alloy Composition

Aluminum (Al), % 0 to 0.4
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0 to 0.080
0.030 to 0.080
Chromium (Cr), % 16 to 17.5
13.5 to 16
Iron (Fe), % 71.3 to 77.6
49.2 to 58.5
Manganese (Mn), % 0 to 1.0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 6.0 to 7.5
24 to 27
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0.4 to 1.2
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5