MakeItFrom.com
Menu (ESC)

S17600 Stainless Steel vs. Grade C-5 Titanium

S17600 stainless steel belongs to the iron alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S17600 stainless steel and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270 to 410
310
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 8.6 to 11
6.7
Fatigue Strength, MPa 300 to 680
510
Poisson's Ratio 0.28
0.32
Rockwell C Hardness 28 to 44
34
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 940 to 1490
1000
Tensile Strength: Yield (Proof), MPa 580 to 1310
940

Thermal Properties

Latent Heat of Fusion, J/g 290
410
Maximum Temperature: Mechanical, °C 890
340
Melting Completion (Liquidus), °C 1430
1610
Melting Onset (Solidus), °C 1390
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 15
7.1
Thermal Expansion, µm/m-K 11
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 13
36
Density, g/cm3 7.8
4.4
Embodied Carbon, kg CO2/kg material 2.9
38
Embodied Energy, MJ/kg 42
610
Embodied Water, L/kg 130
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
66
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4390
4200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 34 to 54
63
Strength to Weight: Bending, points 28 to 37
50
Thermal Diffusivity, mm2/s 4.1
2.9
Thermal Shock Resistance, points 31 to 50
71

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.4
5.5 to 6.8
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 16 to 17.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 71.3 to 77.6
0 to 0.4
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.0 to 7.5
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.4 to 1.2
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4