MakeItFrom.com
Menu (ESC)

S17600 Stainless Steel vs. C66100 Bronze

S17600 stainless steel belongs to the iron alloys classification, while C66100 bronze belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S17600 stainless steel and the bottom bar is C66100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 8.6 to 11
8.0 to 40
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 560 to 880
280 to 460
Tensile Strength: Ultimate (UTS), MPa 940 to 1490
410 to 790
Tensile Strength: Yield (Proof), MPa 580 to 1310
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 890
200
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1390
1000
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
34
Thermal Expansion, µm/m-K 11
17

Otherwise Unclassified Properties

Base Metal Price, % relative 13
29
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.9
2.6
Embodied Energy, MJ/kg 42
42
Embodied Water, L/kg 130
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
53 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4390
60 to 790
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 34 to 54
13 to 25
Strength to Weight: Bending, points 28 to 37
14 to 22
Thermal Diffusivity, mm2/s 4.1
9.7
Thermal Shock Resistance, points 31 to 50
15 to 29

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 17.5
0
Copper (Cu), % 0
92 to 97
Iron (Fe), % 71.3 to 77.6
0 to 0.25
Lead (Pb), % 0
0.2 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 6.0 to 7.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
2.8 to 3.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0.4 to 1.2
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5