MakeItFrom.com
Menu (ESC)

S17600 Stainless Steel vs. C67600 Bronze

S17600 stainless steel belongs to the iron alloys classification, while C67600 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S17600 stainless steel and the bottom bar is C67600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 8.6 to 11
13 to 33
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Shear Strength, MPa 560 to 880
270 to 350
Tensile Strength: Ultimate (UTS), MPa 940 to 1490
430 to 570
Tensile Strength: Yield (Proof), MPa 580 to 1310
170 to 380

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 890
120
Melting Completion (Liquidus), °C 1430
890
Melting Onset (Solidus), °C 1390
870
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 11
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
24
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
27

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 42
47
Embodied Water, L/kg 130
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 70 to 150
63 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4390
140 to 680
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 34 to 54
15 to 20
Strength to Weight: Bending, points 28 to 37
16 to 19
Thermal Diffusivity, mm2/s 4.1
35
Thermal Shock Resistance, points 31 to 50
14 to 19

Alloy Composition

Aluminum (Al), % 0 to 0.4
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 16 to 17.5
0
Copper (Cu), % 0
57 to 60
Iron (Fe), % 71.3 to 77.6
0.4 to 1.3
Lead (Pb), % 0
0.5 to 1.0
Manganese (Mn), % 0 to 1.0
0.050 to 0.5
Nickel (Ni), % 6.0 to 7.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.5 to 1.5
Titanium (Ti), % 0.4 to 1.2
0
Zinc (Zn), % 0
35.2 to 41.6
Residuals, % 0
0 to 0.5