MakeItFrom.com
Menu (ESC)

S17700 Stainless Steel vs. EN 1.1203 Steel

Both S17700 stainless steel and EN 1.1203 steel are iron alloys. They have 75% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S17700 stainless steel and the bottom bar is EN 1.1203 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 430
200 to 230
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 1.0 to 23
12 to 15
Fatigue Strength, MPa 290 to 560
210 to 310
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
72
Shear Strength, MPa 740 to 940
420 to 480
Tensile Strength: Ultimate (UTS), MPa 1180 to 1650
690 to 780
Tensile Strength: Yield (Proof), MPa 430 to 1210
340 to 480

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 890
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
48
Thermal Expansion, µm/m-K 11
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 40
19
Embodied Water, L/kg 150
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 210
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 3750
310 to 610
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 42 to 59
25 to 28
Strength to Weight: Bending, points 32 to 40
22 to 24
Thermal Diffusivity, mm2/s 4.1
13
Thermal Shock Resistance, points 39 to 54
22 to 25

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
0
Carbon (C), % 0 to 0.090
0.52 to 0.6
Chromium (Cr), % 16 to 18
0 to 0.4
Iron (Fe), % 70.5 to 76.8
97.1 to 98.9
Manganese (Mn), % 0 to 1.0
0.6 to 0.9
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 6.5 to 7.8
0 to 0.4
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.035