MakeItFrom.com
Menu (ESC)

S17700 Stainless Steel vs. CC382H Copper-nickel

S17700 stainless steel belongs to the iron alloys classification, while CC382H copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S17700 stainless steel and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180 to 430
130
Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 1.0 to 23
20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
53
Tensile Strength: Ultimate (UTS), MPa 1180 to 1650
490
Tensile Strength: Yield (Proof), MPa 430 to 1210
290

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 890
260
Melting Completion (Liquidus), °C 1440
1180
Melting Onset (Solidus), °C 1400
1120
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
30
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
5.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
5.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
41
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.8
5.2
Embodied Energy, MJ/kg 40
76
Embodied Water, L/kg 150
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 210
85
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 3750
290
Stiffness to Weight: Axial, points 14
8.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 42 to 59
15
Strength to Weight: Bending, points 32 to 40
16
Thermal Diffusivity, mm2/s 4.1
8.2
Thermal Shock Resistance, points 39 to 54
16

Alloy Composition

Aluminum (Al), % 0.75 to 1.5
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.090
0 to 0.030
Chromium (Cr), % 16 to 18
1.5 to 2.0
Copper (Cu), % 0
62.8 to 68.4
Iron (Fe), % 70.5 to 76.8
0.5 to 1.0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0.5 to 1.0
Nickel (Ni), % 6.5 to 7.8
29 to 32
Phosphorus (P), % 0 to 0.040
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 1.0
0.15 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15