MakeItFrom.com
Menu (ESC)

S30600 Stainless Steel vs. ASTM A182 Grade F23

Both S30600 stainless steel and ASTM A182 grade F23 are iron alloys. They have 65% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S30600 stainless steel and the bottom bar is ASTM A182 grade F23.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 45
22
Fatigue Strength, MPa 250
320
Poisson's Ratio 0.28
0.29
Reduction in Area, % 56
46
Shear Modulus, GPa 76
74
Shear Strength, MPa 430
360
Tensile Strength: Ultimate (UTS), MPa 610
570
Tensile Strength: Yield (Proof), MPa 270
460

Thermal Properties

Latent Heat of Fusion, J/g 350
250
Maximum Temperature: Mechanical, °C 950
450
Melting Completion (Liquidus), °C 1380
1500
Melting Onset (Solidus), °C 1330
1450
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 14
41
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 19
7.0
Density, g/cm3 7.6
8.0
Embodied Carbon, kg CO2/kg material 3.6
2.5
Embodied Energy, MJ/kg 51
36
Embodied Water, L/kg 150
59

Common Calculations

PREN (Pitting Resistance) 18
5.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
20
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 3.7
11
Thermal Shock Resistance, points 14
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.030
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.018
0.040 to 0.1
Chromium (Cr), % 17 to 18.5
1.9 to 2.6
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 58.9 to 65.3
93.2 to 96.2
Manganese (Mn), % 0 to 2.0
0.1 to 0.6
Molybdenum (Mo), % 0 to 0.2
0.050 to 0.3
Nickel (Ni), % 14 to 15.5
0 to 0.4
Niobium (Nb), % 0
0.020 to 0.080
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 3.7 to 4.3
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0
0.0050 to 0.060
Tungsten (W), % 0
1.5 to 1.8
Vanadium (V), % 0
0.2 to 0.3