MakeItFrom.com
Menu (ESC)

S30615 Stainless Steel vs. EN AC-43400 Aluminum

S30615 stainless steel belongs to the iron alloys classification, while EN AC-43400 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30615 stainless steel and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
80
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 39
1.1
Fatigue Strength, MPa 270
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 690
270
Tensile Strength: Yield (Proof), MPa 310
160

Thermal Properties

Latent Heat of Fusion, J/g 340
540
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1370
600
Melting Onset (Solidus), °C 1320
590
Specific Heat Capacity, J/kg-K 500
900
Thermal Conductivity, W/m-K 14
140
Thermal Expansion, µm/m-K 16
22

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.6
2.6
Embodied Carbon, kg CO2/kg material 3.7
7.8
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 170
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 260
180
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 25
29
Strength to Weight: Bending, points 23
36
Thermal Diffusivity, mm2/s 3.7
59
Thermal Shock Resistance, points 16
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.8 to 1.5
86 to 90.8
Carbon (C), % 0.16 to 0.24
0
Chromium (Cr), % 17 to 19.5
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 56.7 to 65.3
0 to 1.0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 2.0
0 to 0.55
Nickel (Ni), % 13.5 to 16
0 to 0.15
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 3.2 to 4.0
9.0 to 11
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15