MakeItFrom.com
Menu (ESC)

S30815 Stainless Steel vs. Grade 2 Titanium

S30815 stainless steel belongs to the iron alloys classification, while grade 2 titanium belongs to the titanium alloys. There are 32 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S30815 stainless steel and the bottom bar is grade 2 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
150
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 45
23
Fatigue Strength, MPa 320
250
Poisson's Ratio 0.28
0.32
Reduction in Area, % 56
37
Shear Modulus, GPa 77
38
Shear Strength, MPa 480
270
Tensile Strength: Ultimate (UTS), MPa 680
420
Tensile Strength: Yield (Proof), MPa 350
360

Thermal Properties

Latent Heat of Fusion, J/g 310
420
Maximum Temperature: Mechanical, °C 1020
320
Melting Completion (Liquidus), °C 1400
1660
Melting Onset (Solidus), °C 1360
1610
Specific Heat Capacity, J/kg-K 490
540
Thermal Conductivity, W/m-K 15
22
Thermal Expansion, µm/m-K 17
9.0

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 17
37
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 3.3
31
Embodied Energy, MJ/kg 47
510
Embodied Water, L/kg 160
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
92
Resilience: Unit (Modulus of Resilience), kJ/m3 310
600
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 25
26
Strength to Weight: Bending, points 22
28
Thermal Diffusivity, mm2/s 4.0
8.9
Thermal Shock Resistance, points 15
32

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.050 to 0.1
0 to 0.080
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 62.8 to 68.4
0 to 0.3
Manganese (Mn), % 0 to 0.8
0
Nickel (Ni), % 10 to 12
0
Nitrogen (N), % 0.14 to 0.2
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.4 to 2.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.9 to 100
Residuals, % 0
0 to 0.4