MakeItFrom.com
Menu (ESC)

S31100 Stainless Steel vs. Grade 6 Titanium

S31100 stainless steel belongs to the iron alloys classification, while grade 6 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S31100 stainless steel and the bottom bar is grade 6 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 4.5
11
Fatigue Strength, MPa 330
290
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
39
Shear Strength, MPa 580
530
Tensile Strength: Ultimate (UTS), MPa 1000
890
Tensile Strength: Yield (Proof), MPa 710
840

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Maximum Temperature: Mechanical, °C 1100
310
Melting Completion (Liquidus), °C 1420
1580
Melting Onset (Solidus), °C 1380
1530
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 16
7.8
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 16
36
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 3.1
30
Embodied Energy, MJ/kg 44
480
Embodied Water, L/kg 170
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
92
Resilience: Unit (Modulus of Resilience), kJ/m3 1240
3390
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 36
55
Strength to Weight: Bending, points 29
46
Thermal Diffusivity, mm2/s 4.2
3.2
Thermal Shock Resistance, points 28
65

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
4.0 to 6.0
Carbon (C), % 0 to 0.060
0 to 0.080
Chromium (Cr), % 25 to 27
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 63.6 to 69
0 to 0.5
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.0 to 7.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.0 to 3.0
Titanium (Ti), % 0 to 0.25
89.8 to 94
Residuals, % 0
0 to 0.4