MakeItFrom.com
Menu (ESC)

S31100 Stainless Steel vs. C90900 Bronze

S31100 stainless steel belongs to the iron alloys classification, while C90900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S31100 stainless steel and the bottom bar is C90900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270
90
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 4.5
15
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 79
40
Tensile Strength: Ultimate (UTS), MPa 1000
280
Tensile Strength: Yield (Proof), MPa 710
140

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1420
980
Melting Onset (Solidus), °C 1380
820
Specific Heat Capacity, J/kg-K 480
360
Thermal Conductivity, W/m-K 16
65
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
11

Otherwise Unclassified Properties

Base Metal Price, % relative 16
36
Density, g/cm3 7.7
8.7
Embodied Carbon, kg CO2/kg material 3.1
3.9
Embodied Energy, MJ/kg 44
64
Embodied Water, L/kg 170
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 40
35
Resilience: Unit (Modulus of Resilience), kJ/m3 1240
89
Stiffness to Weight: Axial, points 14
6.8
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 36
8.8
Strength to Weight: Bending, points 29
11
Thermal Diffusivity, mm2/s 4.2
21
Thermal Shock Resistance, points 28
10

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 25 to 27
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 63.6 to 69
0 to 0.15
Lead (Pb), % 0
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 6.0 to 7.0
0 to 0.5
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
12 to 14
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.6