MakeItFrom.com
Menu (ESC)

S31266 Stainless Steel vs. EN 1.4029 Stainless Steel

Both S31266 stainless steel and EN 1.4029 stainless steel are iron alloys. They have 54% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S31266 stainless steel and the bottom bar is EN 1.4029 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 40
10 to 20
Fatigue Strength, MPa 400
270 to 400
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
76
Shear Strength, MPa 590
440 to 550
Tensile Strength: Ultimate (UTS), MPa 860
700 to 930
Tensile Strength: Yield (Proof), MPa 470
410 to 740

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Corrosion, °C 440
390
Maximum Temperature: Mechanical, °C 1100
750
Melting Completion (Liquidus), °C 1470
1440
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 12
30
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
3.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.7

Otherwise Unclassified Properties

Base Metal Price, % relative 37
7.0
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 6.5
2.0
Embodied Energy, MJ/kg 89
28
Embodied Water, L/kg 220
100

Common Calculations

PREN (Pitting Resistance) 54
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
89 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 540
440 to 1410
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 29
25 to 33
Strength to Weight: Bending, points 24
23 to 27
Thermal Diffusivity, mm2/s 3.1
8.1
Thermal Shock Resistance, points 18
26 to 34

Alloy Composition

Carbon (C), % 0 to 0.030
0.25 to 0.32
Chromium (Cr), % 23 to 25
12 to 13.5
Copper (Cu), % 1.0 to 2.5
0
Iron (Fe), % 34.1 to 46
82.8 to 87.6
Manganese (Mn), % 2.0 to 4.0
0 to 1.5
Molybdenum (Mo), % 5.2 to 6.2
0 to 0.6
Nickel (Ni), % 21 to 24
0
Nitrogen (N), % 0.35 to 0.6
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0.15 to 0.25
Tungsten (W), % 1.5 to 2.5
0