MakeItFrom.com
Menu (ESC)

S31277 Stainless Steel vs. 358.0 Aluminum

S31277 stainless steel belongs to the iron alloys classification, while 358.0 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S31277 stainless steel and the bottom bar is 358.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 45
3.5 to 6.0
Fatigue Strength, MPa 380
100 to 110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
27
Shear Strength, MPa 600
300 to 320
Tensile Strength: Ultimate (UTS), MPa 860
350 to 370
Tensile Strength: Yield (Proof), MPa 410
290 to 320

Thermal Properties

Latent Heat of Fusion, J/g 310
520
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1410
560
Specific Heat Capacity, J/kg-K 460
900
Thermal Expansion, µm/m-K 16
21

Otherwise Unclassified Properties

Base Metal Price, % relative 36
19
Density, g/cm3 8.1
2.6
Embodied Carbon, kg CO2/kg material 6.7
8.7
Embodied Energy, MJ/kg 90
160
Embodied Water, L/kg 220
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
12 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 410
590 to 710
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 29
37 to 39
Strength to Weight: Bending, points 25
42 to 44
Thermal Shock Resistance, points 19
16 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
89.1 to 91.8
Beryllium (Be), % 0
0.1 to 0.3
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20.5 to 23
0 to 0.2
Copper (Cu), % 0.5 to 1.5
0 to 0.2
Iron (Fe), % 35.5 to 46.2
0 to 0.3
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 3.0
0 to 0.2
Molybdenum (Mo), % 6.5 to 8.0
0
Nickel (Ni), % 26 to 28
0
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
7.6 to 8.6
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15