MakeItFrom.com
Menu (ESC)

S31277 Stainless Steel vs. C61500 Bronze

S31277 stainless steel belongs to the iron alloys classification, while C61500 bronze belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S31277 stainless steel and the bottom bar is C61500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 45
3.0 to 55
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 80
42
Shear Strength, MPa 600
350 to 550
Tensile Strength: Ultimate (UTS), MPa 860
480 to 970
Tensile Strength: Yield (Proof), MPa 410
150 to 720

Thermal Properties

Latent Heat of Fusion, J/g 310
220
Maximum Temperature: Mechanical, °C 1100
220
Melting Completion (Liquidus), °C 1460
1040
Melting Onset (Solidus), °C 1410
1030
Specific Heat Capacity, J/kg-K 460
430
Thermal Expansion, µm/m-K 16
18

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 8.1
8.4
Embodied Carbon, kg CO2/kg material 6.7
3.2
Embodied Energy, MJ/kg 90
52
Embodied Water, L/kg 220
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 320
27 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 410
100 to 2310
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 29
16 to 32
Strength to Weight: Bending, points 25
16 to 26
Thermal Shock Resistance, points 19
17 to 34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
7.7 to 8.3
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 20.5 to 23
0
Copper (Cu), % 0.5 to 1.5
89 to 90.5
Iron (Fe), % 35.5 to 46.2
0
Lead (Pb), % 0
0 to 0.015
Manganese (Mn), % 0 to 3.0
0
Molybdenum (Mo), % 6.5 to 8.0
0
Nickel (Ni), % 26 to 28
1.8 to 2.2
Nitrogen (N), % 0.3 to 0.4
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.010
0
Residuals, % 0
0 to 0.5