MakeItFrom.com
Menu (ESC)

S32050 Stainless Steel vs. 4104 Aluminum

S32050 stainless steel belongs to the iron alloys classification, while 4104 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32050 stainless steel and the bottom bar is 4104 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 46
2.4
Fatigue Strength, MPa 340
42
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Shear Strength, MPa 540
63
Tensile Strength: Ultimate (UTS), MPa 770
110
Tensile Strength: Yield (Proof), MPa 370
60

Thermal Properties

Latent Heat of Fusion, J/g 310
540
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1460
600
Melting Onset (Solidus), °C 1410
560
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.1
120

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.0
2.6
Embodied Carbon, kg CO2/kg material 6.0
8.0
Embodied Energy, MJ/kg 81
150
Embodied Water, L/kg 210
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 330
25
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 27
12
Strength to Weight: Bending, points 23
20
Thermal Diffusivity, mm2/s 3.3
58
Thermal Shock Resistance, points 17
5.1

Alloy Composition

Aluminum (Al), % 0
85.8 to 90
Bismuth (Bi), % 0
0.020 to 0.2
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0 to 0.4
0 to 0.25
Iron (Fe), % 43.1 to 51.8
0 to 0.8
Magnesium (Mg), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 6.0 to 6.6
0
Nickel (Ni), % 20 to 23
0
Nitrogen (N), % 0.21 to 0.32
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 1.0
9.0 to 10.5
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15