MakeItFrom.com
Menu (ESC)

S32050 Stainless Steel vs. N08120 Nickel

S32050 stainless steel belongs to the iron alloys classification, while N08120 nickel belongs to the nickel alloys. They have 79% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S32050 stainless steel and the bottom bar is N08120 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 46
34
Fatigue Strength, MPa 340
230
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 81
79
Shear Strength, MPa 540
470
Tensile Strength: Ultimate (UTS), MPa 770
700
Tensile Strength: Yield (Proof), MPa 370
310

Thermal Properties

Latent Heat of Fusion, J/g 310
310
Maximum Temperature: Mechanical, °C 1100
1000
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1410
1370
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
11
Thermal Expansion, µm/m-K 16
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
45
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 6.0
7.2
Embodied Energy, MJ/kg 81
100
Embodied Water, L/kg 210
240

Common Calculations

PREN (Pitting Resistance) 48
35
Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
190
Resilience: Unit (Modulus of Resilience), kJ/m3 330
240
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
24
Strength to Weight: Bending, points 23
21
Thermal Diffusivity, mm2/s 3.3
3.0
Thermal Shock Resistance, points 17
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Boron (B), % 0
0 to 0.010
Carbon (C), % 0 to 0.030
0.020 to 0.1
Chromium (Cr), % 22 to 24
23 to 27
Cobalt (Co), % 0
0 to 3.0
Copper (Cu), % 0 to 0.4
0 to 0.5
Iron (Fe), % 43.1 to 51.8
21 to 41.4
Manganese (Mn), % 0 to 1.5
0 to 1.5
Molybdenum (Mo), % 6.0 to 6.6
0 to 2.5
Nickel (Ni), % 20 to 23
35 to 39
Niobium (Nb), % 0
0.4 to 0.9
Nitrogen (N), % 0.21 to 0.32
0.15 to 0.3
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0
0 to 0.2
Tungsten (W), % 0
0 to 2.5