MakeItFrom.com
Menu (ESC)

S32053 Stainless Steel vs. 3105 Aluminum

S32053 stainless steel belongs to the iron alloys classification, while 3105 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32053 stainless steel and the bottom bar is 3105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
29 to 67
Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 46
1.1 to 20
Fatigue Strength, MPa 310
39 to 95
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 510
77 to 140
Tensile Strength: Ultimate (UTS), MPa 730
120 to 240
Tensile Strength: Yield (Proof), MPa 330
46 to 220

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1450
660
Melting Onset (Solidus), °C 1400
640
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 13
170
Thermal Expansion, µm/m-K 16
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
44
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
140

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.1
2.8
Embodied Carbon, kg CO2/kg material 6.1
8.2
Embodied Energy, MJ/kg 83
150
Embodied Water, L/kg 210
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
2.6 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 270
15 to 340
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 25
12 to 24
Strength to Weight: Bending, points 22
20 to 31
Thermal Diffusivity, mm2/s 3.3
68
Thermal Shock Resistance, points 16
5.2 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
96 to 99.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 24
0 to 0.2
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 41.7 to 48.8
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 5.0 to 6.0
0
Nickel (Ni), % 24 to 26
0
Nitrogen (N), % 0.17 to 0.22
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.4
Residuals, % 0
0 to 0.15