MakeItFrom.com
Menu (ESC)

S32053 Stainless Steel vs. 6023 Aluminum

S32053 stainless steel belongs to the iron alloys classification, while 6023 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32053 stainless steel and the bottom bar is 6023 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 46
11
Fatigue Strength, MPa 310
120 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 510
210 to 220
Tensile Strength: Ultimate (UTS), MPa 730
360
Tensile Strength: Yield (Proof), MPa 330
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1100
160
Melting Completion (Liquidus), °C 1450
640
Melting Onset (Solidus), °C 1400
580
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 13
170
Thermal Expansion, µm/m-K 16
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
45
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
140

Otherwise Unclassified Properties

Base Metal Price, % relative 33
11
Density, g/cm3 8.1
2.8
Embodied Carbon, kg CO2/kg material 6.1
8.3
Embodied Energy, MJ/kg 83
150
Embodied Water, L/kg 210
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
38 to 39
Resilience: Unit (Modulus of Resilience), kJ/m3 270
670 to 690
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 25
35 to 36
Strength to Weight: Bending, points 22
40
Thermal Diffusivity, mm2/s 3.3
67
Thermal Shock Resistance, points 16
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94 to 97.7
Bismuth (Bi), % 0
0.3 to 0.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0
0.2 to 0.5
Iron (Fe), % 41.7 to 48.8
0 to 0.5
Magnesium (Mg), % 0
0.4 to 0.9
Manganese (Mn), % 0 to 1.0
0.2 to 0.6
Molybdenum (Mo), % 5.0 to 6.0
0
Nickel (Ni), % 24 to 26
0
Nitrogen (N), % 0.17 to 0.22
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0.6 to 1.4
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.6 to 1.2
Residuals, % 0
0 to 0.15