MakeItFrom.com
Menu (ESC)

S32053 Stainless Steel vs. AISI 314 Stainless Steel

Both S32053 stainless steel and AISI 314 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 90% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S32053 stainless steel and the bottom bar is AISI 314 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
180
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 46
45
Fatigue Strength, MPa 310
210
Poisson's Ratio 0.28
0.28
Reduction in Area, % 56
57
Shear Modulus, GPa 80
78
Shear Strength, MPa 510
410
Tensile Strength: Ultimate (UTS), MPa 730
590
Tensile Strength: Yield (Proof), MPa 330
230

Thermal Properties

Latent Heat of Fusion, J/g 310
330
Maximum Temperature: Corrosion, °C 440
440
Maximum Temperature: Mechanical, °C 1100
1100
Melting Completion (Liquidus), °C 1450
1380
Melting Onset (Solidus), °C 1400
1340
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 13
15
Thermal Expansion, µm/m-K 16
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 33
25
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 6.1
4.3
Embodied Energy, MJ/kg 83
62
Embodied Water, L/kg 210
190

Common Calculations

PREN (Pitting Resistance) 44
25
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
210
Resilience: Unit (Modulus of Resilience), kJ/m3 270
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
21
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 3.3
3.9
Thermal Shock Resistance, points 16
14

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.25
Chromium (Cr), % 22 to 24
23 to 26
Iron (Fe), % 41.7 to 48.8
46.7 to 56.5
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 5.0 to 6.0
0
Nickel (Ni), % 24 to 26
19 to 22
Nitrogen (N), % 0.17 to 0.22
0
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 1.0
1.5 to 3.0
Sulfur (S), % 0 to 0.010
0 to 0.030