MakeItFrom.com
Menu (ESC)

S32053 Stainless Steel vs. Nickel 718

S32053 stainless steel belongs to the iron alloys classification, while nickel 718 belongs to the nickel alloys. They have 65% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S32053 stainless steel and the bottom bar is nickel 718.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 46
12 to 50
Fatigue Strength, MPa 310
460 to 760
Poisson's Ratio 0.28
0.29
Reduction in Area, % 56
34 to 64
Shear Modulus, GPa 80
75
Shear Strength, MPa 510
660 to 950
Tensile Strength: Ultimate (UTS), MPa 730
930 to 1530
Tensile Strength: Yield (Proof), MPa 330
510 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 310
310
Maximum Temperature: Mechanical, °C 1100
980
Melting Completion (Liquidus), °C 1450
1340
Melting Onset (Solidus), °C 1400
1260
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 13
11
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
75
Density, g/cm3 8.1
8.3
Embodied Carbon, kg CO2/kg material 6.1
13
Embodied Energy, MJ/kg 83
190
Embodied Water, L/kg 210
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
140 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 270
660 to 4560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 25
31 to 51
Strength to Weight: Bending, points 22
25 to 35
Thermal Diffusivity, mm2/s 3.3
3.0
Thermal Shock Resistance, points 16
27 to 44

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.8
Boron (B), % 0
0 to 0.0060
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 22 to 24
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 41.7 to 48.8
11.1 to 24.6
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 5.0 to 6.0
2.8 to 3.3
Nickel (Ni), % 24 to 26
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Nitrogen (N), % 0.17 to 0.22
0
Phosphorus (P), % 0 to 0.030
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0
0.65 to 1.2