MakeItFrom.com
Menu (ESC)

S32053 Stainless Steel vs. C67300 Bronze

S32053 stainless steel belongs to the iron alloys classification, while C67300 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S32053 stainless steel and the bottom bar is C67300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 46
12
Poisson's Ratio 0.28
0.31
Rockwell B Hardness 83
91
Shear Modulus, GPa 80
41
Shear Strength, MPa 510
300
Tensile Strength: Ultimate (UTS), MPa 730
500
Tensile Strength: Yield (Proof), MPa 330
340

Thermal Properties

Latent Heat of Fusion, J/g 310
190
Maximum Temperature: Mechanical, °C 1100
130
Melting Completion (Liquidus), °C 1450
870
Melting Onset (Solidus), °C 1400
830
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 13
95
Thermal Expansion, µm/m-K 16
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
25

Otherwise Unclassified Properties

Base Metal Price, % relative 33
23
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 6.1
2.7
Embodied Energy, MJ/kg 83
46
Embodied Water, L/kg 210
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
55
Resilience: Unit (Modulus of Resilience), kJ/m3 270
550
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 3.3
30
Thermal Shock Resistance, points 16
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 22 to 24
0
Copper (Cu), % 0
58 to 63
Iron (Fe), % 41.7 to 48.8
0 to 0.5
Lead (Pb), % 0
0.4 to 3.0
Manganese (Mn), % 0 to 1.0
2.0 to 3.5
Molybdenum (Mo), % 5.0 to 6.0
0
Nickel (Ni), % 24 to 26
0 to 0.25
Nitrogen (N), % 0.17 to 0.22
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0.5 to 1.5
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 0
27.2 to 39.1
Residuals, % 0
0 to 0.5