MakeItFrom.com
Menu (ESC)

S32053 Stainless Steel vs. S17600 Stainless Steel

Both S32053 stainless steel and S17600 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S32053 stainless steel and the bottom bar is S17600 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
270 to 410
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 46
8.6 to 11
Fatigue Strength, MPa 310
300 to 680
Poisson's Ratio 0.28
0.28
Reduction in Area, % 56
28 to 50
Shear Modulus, GPa 80
76
Shear Strength, MPa 510
560 to 880
Tensile Strength: Ultimate (UTS), MPa 730
940 to 1490
Tensile Strength: Yield (Proof), MPa 330
580 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 440
550
Maximum Temperature: Mechanical, °C 1100
890
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 13
15
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 33
13
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.1
2.9
Embodied Energy, MJ/kg 83
42
Embodied Water, L/kg 210
130

Common Calculations

PREN (Pitting Resistance) 44
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 270
850 to 4390
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
34 to 54
Strength to Weight: Bending, points 22
28 to 37
Thermal Diffusivity, mm2/s 3.3
4.1
Thermal Shock Resistance, points 16
31 to 50

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 22 to 24
16 to 17.5
Iron (Fe), % 41.7 to 48.8
71.3 to 77.6
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 5.0 to 6.0
0
Nickel (Ni), % 24 to 26
6.0 to 7.5
Nitrogen (N), % 0.17 to 0.22
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0
0.4 to 1.2