MakeItFrom.com
Menu (ESC)

S32053 Stainless Steel vs. S44535 Stainless Steel

Both S32053 stainless steel and S44535 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 68% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S32053 stainless steel and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
170
Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 46
28
Fatigue Strength, MPa 310
210
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 83
77
Shear Modulus, GPa 80
78
Shear Strength, MPa 510
290
Tensile Strength: Ultimate (UTS), MPa 730
450
Tensile Strength: Yield (Proof), MPa 330
290

Thermal Properties

Latent Heat of Fusion, J/g 310
290
Maximum Temperature: Corrosion, °C 440
450
Maximum Temperature: Mechanical, °C 1100
1000
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1400
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 13
21
Thermal Expansion, µm/m-K 16
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.8
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 33
11
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 6.1
2.4
Embodied Energy, MJ/kg 83
34
Embodied Water, L/kg 210
140

Common Calculations

PREN (Pitting Resistance) 44
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
110
Resilience: Unit (Modulus of Resilience), kJ/m3 270
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 25
16
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 3.3
5.6
Thermal Shock Resistance, points 16
15

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 22 to 24
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 41.7 to 48.8
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 5.0 to 6.0
0
Nickel (Ni), % 24 to 26
0
Nitrogen (N), % 0.17 to 0.22
0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.020
Titanium (Ti), % 0
0.030 to 0.2