MakeItFrom.com
Menu (ESC)

S32506 Stainless Steel vs. EN 1.4958 Stainless Steel

Both S32506 stainless steel and EN 1.4958 stainless steel are iron alloys. They have 74% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S32506 stainless steel and the bottom bar is EN 1.4958 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
40
Fatigue Strength, MPa 330
170
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 81
77
Shear Strength, MPa 440
430
Tensile Strength: Ultimate (UTS), MPa 710
630
Tensile Strength: Yield (Proof), MPa 500
190

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 450
500
Maximum Temperature: Mechanical, °C 1100
1090
Melting Completion (Liquidus), °C 1450
1400
Melting Onset (Solidus), °C 1400
1350
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
12
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 20
30
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.9
5.3
Embodied Energy, MJ/kg 54
75
Embodied Water, L/kg 180
200

Common Calculations

PREN (Pitting Resistance) 38
21
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
190
Resilience: Unit (Modulus of Resilience), kJ/m3 620
95
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
22
Strength to Weight: Bending, points 23
20
Thermal Diffusivity, mm2/s 4.3
3.2
Thermal Shock Resistance, points 19
15

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.5
Carbon (C), % 0 to 0.030
0.030 to 0.080
Chromium (Cr), % 24 to 26
19 to 22
Cobalt (Co), % 0
0 to 0.5
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 60.8 to 67.4
41.1 to 50.6
Manganese (Mn), % 0 to 1.0
0 to 1.5
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 5.5 to 7.2
30 to 32.5
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0.080 to 0.2
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 0.9
0 to 0.7
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0.2 to 0.5
Tungsten (W), % 0.050 to 0.3
0