MakeItFrom.com
Menu (ESC)

S32615 Stainless Steel vs. 2025 Aluminum

S32615 stainless steel belongs to the iron alloys classification, while 2025 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32615 stainless steel and the bottom bar is 2025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
110
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 28
15
Fatigue Strength, MPa 180
130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
27
Shear Strength, MPa 400
240
Tensile Strength: Ultimate (UTS), MPa 620
400
Tensile Strength: Yield (Proof), MPa 250
260

Thermal Properties

Latent Heat of Fusion, J/g 370
400
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1310
520
Specific Heat Capacity, J/kg-K 500
870
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 24
10
Density, g/cm3 7.6
3.0
Embodied Carbon, kg CO2/kg material 4.4
7.9
Embodied Energy, MJ/kg 63
150
Embodied Water, L/kg 170
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
55
Resilience: Unit (Modulus of Resilience), kJ/m3 160
450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 23
37
Strength to Weight: Bending, points 21
40
Thermal Shock Resistance, points 15
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
90.9 to 95.2
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 16.5 to 19.5
0 to 0.1
Copper (Cu), % 1.5 to 2.5
3.9 to 5.0
Iron (Fe), % 46.4 to 57.9
0 to 1.0
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0.4 to 1.2
Molybdenum (Mo), % 0.3 to 1.5
0
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 4.8 to 6.0
0.5 to 1.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15