MakeItFrom.com
Menu (ESC)

S35000 Stainless Steel vs. C66300 Brass

S35000 stainless steel belongs to the iron alloys classification, while C66300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S35000 stainless steel and the bottom bar is C66300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 2.3 to 14
2.3 to 22
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Shear Strength, MPa 740 to 950
290 to 470
Tensile Strength: Ultimate (UTS), MPa 1300 to 1570
460 to 810
Tensile Strength: Yield (Proof), MPa 660 to 1160
400 to 800

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 900
180
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1410
1000
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
26

Otherwise Unclassified Properties

Base Metal Price, % relative 14
29
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 3.2
2.8
Embodied Energy, MJ/kg 44
46
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 28 to 170
17 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 1070 to 3360
710 to 2850
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 46 to 56
15 to 26
Strength to Weight: Bending, points 34 to 38
15 to 22
Thermal Diffusivity, mm2/s 4.4
32
Thermal Shock Resistance, points 42 to 51
16 to 28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.070 to 0.11
0
Chromium (Cr), % 16 to 17
0
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 0
84.5 to 87.5
Iron (Fe), % 72.7 to 76.9
1.4 to 2.4
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.5 to 1.3
0
Molybdenum (Mo), % 2.5 to 3.2
0
Nickel (Ni), % 4.0 to 5.0
0
Nitrogen (N), % 0.070 to 0.13
0
Phosphorus (P), % 0 to 0.040
0 to 0.35
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.0 to 12.8
Residuals, % 0
0 to 0.5

Comparable Variants