MakeItFrom.com
Menu (ESC)

S35045 Stainless Steel vs. EN 1.6932 Steel

Both S35045 stainless steel and EN 1.6932 steel are iron alloys. They have a modest 40% of their average alloy composition in common, which, by itself, doesn't mean much. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S35045 stainless steel and the bottom bar is EN 1.6932 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 39
14
Fatigue Strength, MPa 170
460
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 370
540
Tensile Strength: Ultimate (UTS), MPa 540
900
Tensile Strength: Yield (Proof), MPa 190
720

Thermal Properties

Latent Heat of Fusion, J/g 310
250
Maximum Temperature: Mechanical, °C 1100
440
Melting Completion (Liquidus), °C 1390
1460
Melting Onset (Solidus), °C 1340
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
45
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 34
4.0
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 5.8
2.0
Embodied Energy, MJ/kg 83
27
Embodied Water, L/kg 230
56

Common Calculations

PREN (Pitting Resistance) 27
2.7
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
110
Resilience: Unit (Modulus of Resilience), kJ/m3 94
1370
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
32
Strength to Weight: Bending, points 19
26
Thermal Diffusivity, mm2/s 3.2
12
Thermal Shock Resistance, points 12
26

Alloy Composition

Aluminum (Al), % 0.15 to 0.6
0
Carbon (C), % 0.060 to 0.1
0.24 to 0.32
Chromium (Cr), % 25 to 29
1.0 to 1.5
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 29.4 to 42.6
94.5 to 96.4
Manganese (Mn), % 0 to 1.5
0.15 to 0.4
Molybdenum (Mo), % 0
0.35 to 0.55
Nickel (Ni), % 32 to 37
1.8 to 2.1
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0 to 0.035
Titanium (Ti), % 0.15 to 0.6
0
Vanadium (V), % 0
0.050 to 0.15