MakeItFrom.com
Menu (ESC)

S35135 Stainless Steel vs. 5049 Aluminum

S35135 stainless steel belongs to the iron alloys classification, while 5049 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S35135 stainless steel and the bottom bar is 5049 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 34
2.0 to 18
Fatigue Strength, MPa 180
79 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 390
130 to 190
Tensile Strength: Ultimate (UTS), MPa 590
210 to 330
Tensile Strength: Yield (Proof), MPa 230
91 to 280

Thermal Properties

Latent Heat of Fusion, J/g 320
400
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
620
Specific Heat Capacity, J/kg-K 470
900
Thermal Expansion, µm/m-K 16
24

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 6.8
8.5
Embodied Energy, MJ/kg 94
150
Embodied Water, L/kg 220
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
6.0 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 130
59 to 570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 20
22 to 34
Strength to Weight: Bending, points 19
29 to 39
Thermal Shock Resistance, points 13
9.3 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94.7 to 97.9
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 20 to 25
0 to 0.3
Copper (Cu), % 0 to 0.75
0 to 0.1
Iron (Fe), % 28.3 to 45
0 to 0.5
Magnesium (Mg), % 0
1.6 to 2.5
Manganese (Mn), % 0 to 1.0
0.5 to 1.1
Molybdenum (Mo), % 4.0 to 4.8
0
Nickel (Ni), % 30 to 38
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0.6 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.4 to 1.0
0 to 0.1
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15