MakeItFrom.com
Menu (ESC)

S35135 Stainless Steel vs. SAE-AISI 1008 Steel

Both S35135 stainless steel and SAE-AISI 1008 steel are iron alloys. They have a modest 37% of their average alloy composition in common, which, by itself, doesn't mean much. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S35135 stainless steel and the bottom bar is SAE-AISI 1008 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
22 to 33
Fatigue Strength, MPa 180
150 to 220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Shear Strength, MPa 390
220 to 230
Tensile Strength: Ultimate (UTS), MPa 590
330 to 370
Tensile Strength: Yield (Proof), MPa 230
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 1100
400
Melting Completion (Liquidus), °C 1430
1470
Melting Onset (Solidus), °C 1380
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 16
12

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 6.8
1.4
Embodied Energy, MJ/kg 94
18
Embodied Water, L/kg 220
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
78 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 130
92 to 260
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
12 to 13
Strength to Weight: Bending, points 19
13 to 15
Thermal Shock Resistance, points 13
10 to 12

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 20 to 25
0
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 28.3 to 45
99.31 to 99.7
Manganese (Mn), % 0 to 1.0
0.3 to 0.5
Molybdenum (Mo), % 4.0 to 4.8
0
Nickel (Ni), % 30 to 38
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0.6 to 1.0
0
Sulfur (S), % 0 to 0.015
0 to 0.050
Titanium (Ti), % 0.4 to 1.0
0