MakeItFrom.com
Menu (ESC)

S35135 Stainless Steel vs. C71580 Copper-nickel

S35135 stainless steel belongs to the iron alloys classification, while C71580 copper-nickel belongs to the copper alloys. They have a modest 32% of their average alloy composition in common, which, by itself, doesn't mean much. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S35135 stainless steel and the bottom bar is C71580 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 34
40
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
51
Shear Strength, MPa 390
230
Tensile Strength: Ultimate (UTS), MPa 590
330
Tensile Strength: Yield (Proof), MPa 230
110

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 1100
260
Melting Completion (Liquidus), °C 1430
1180
Melting Onset (Solidus), °C 1380
1120
Specific Heat Capacity, J/kg-K 470
400
Thermal Expansion, µm/m-K 16
15

Otherwise Unclassified Properties

Base Metal Price, % relative 37
41
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 6.8
5.1
Embodied Energy, MJ/kg 94
74
Embodied Water, L/kg 220
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
100
Resilience: Unit (Modulus of Resilience), kJ/m3 130
47
Stiffness to Weight: Axial, points 14
8.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
10
Strength to Weight: Bending, points 19
12
Thermal Shock Resistance, points 13
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.080
0 to 0.070
Chromium (Cr), % 20 to 25
0
Copper (Cu), % 0 to 0.75
65.5 to 71
Iron (Fe), % 28.3 to 45
0 to 0.5
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0 to 0.3
Molybdenum (Mo), % 4.0 to 4.8
0
Nickel (Ni), % 30 to 38
29 to 33
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0.6 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.4 to 1.0
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.5