MakeItFrom.com
Menu (ESC)

S35140 Stainless Steel vs. C85500 Brass

S35140 stainless steel belongs to the iron alloys classification, while C85500 brass belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S35140 stainless steel and the bottom bar is C85500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
85
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 34
40
Poisson's Ratio 0.28
0.31
Rockwell B Hardness 88
55
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 690
410
Tensile Strength: Yield (Proof), MPa 310
160

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1420
900
Melting Onset (Solidus), °C 1370
890
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
29

Otherwise Unclassified Properties

Base Metal Price, % relative 31
23
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 5.5
2.7
Embodied Energy, MJ/kg 78
46
Embodied Water, L/kg 190
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
130
Resilience: Unit (Modulus of Resilience), kJ/m3 250
120
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 24
14
Strength to Weight: Bending, points 22
15
Thermal Diffusivity, mm2/s 3.7
38
Thermal Shock Resistance, points 16
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 20 to 22
0
Copper (Cu), % 0
59 to 63
Iron (Fe), % 44.1 to 52.7
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 1.0 to 3.0
0 to 0.2
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 25 to 27
0 to 0.2
Niobium (Nb), % 0.25 to 0.75
0
Nitrogen (N), % 0.080 to 0.2
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
35.1 to 41
Residuals, % 0
0 to 0.9