MakeItFrom.com
Menu (ESC)

S35500 Stainless Steel vs. 5456 Aluminum

S35500 stainless steel belongs to the iron alloys classification, while 5456 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S35500 stainless steel and the bottom bar is 5456 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 14
11 to 18
Fatigue Strength, MPa 690 to 730
130 to 210
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 810 to 910
190 to 210
Tensile Strength: Ultimate (UTS), MPa 1330 to 1490
320 to 340
Tensile Strength: Yield (Proof), MPa 1200 to 1280
150 to 250

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Corrosion, °C 440
65
Maximum Temperature: Mechanical, °C 870
190
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
570
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 16
120
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
97

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 3.5
9.0
Embodied Energy, MJ/kg 47
150
Embodied Water, L/kg 130
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
33 to 46
Resilience: Unit (Modulus of Resilience), kJ/m3 3610 to 4100
170 to 470
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 47 to 53
33 to 35
Strength to Weight: Bending, points 34 to 37
38 to 40
Thermal Diffusivity, mm2/s 4.4
48
Thermal Shock Resistance, points 44 to 49
14 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
92 to 94.8
Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 15 to 16
0.050 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 73.2 to 77.7
0 to 0.4
Magnesium (Mg), % 0
4.7 to 5.5
Manganese (Mn), % 0.5 to 1.3
0.5 to 1.0
Molybdenum (Mo), % 2.5 to 3.2
0
Nickel (Ni), % 4.0 to 5.0
0
Niobium (Nb), % 0.1 to 0.5
0
Nitrogen (N), % 0.070 to 0.13
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15

Comparable Variants