MakeItFrom.com
Menu (ESC)

S35500 Stainless Steel vs. Grade Ti-Pd16 Titanium

S35500 stainless steel belongs to the iron alloys classification, while grade Ti-Pd16 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S35500 stainless steel and the bottom bar is grade Ti-Pd16 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14
17
Fatigue Strength, MPa 690 to 730
200
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 1330 to 1490
390
Tensile Strength: Yield (Proof), MPa 1200 to 1280
310

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 870
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 16
22
Thermal Expansion, µm/m-K 11
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.1

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 3.5
36
Embodied Energy, MJ/kg 47
600
Embodied Water, L/kg 130
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
62
Resilience: Unit (Modulus of Resilience), kJ/m3 3610 to 4100
440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 47 to 53
24
Strength to Weight: Bending, points 34 to 37
26
Thermal Diffusivity, mm2/s 4.4
8.9
Thermal Shock Resistance, points 44 to 49
30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.1 to 0.15
0 to 0.1
Chromium (Cr), % 15 to 16
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 73.2 to 77.7
0 to 0.3
Manganese (Mn), % 0.5 to 1.3
0
Molybdenum (Mo), % 2.5 to 3.2
0
Nickel (Ni), % 4.0 to 5.0
0 to 0.030
Niobium (Nb), % 0.1 to 0.5
0
Nitrogen (N), % 0.070 to 0.13
0
Oxygen (O), % 0
0 to 0.18
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
98.8 to 99.96
Residuals, % 0
0 to 0.4