MakeItFrom.com
Menu (ESC)

S35500 Stainless Steel vs. C42600 Brass

S35500 stainless steel belongs to the iron alloys classification, while C42600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S35500 stainless steel and the bottom bar is C42600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14
1.1 to 40
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Shear Strength, MPa 810 to 910
280 to 470
Tensile Strength: Ultimate (UTS), MPa 1330 to 1490
410 to 830
Tensile Strength: Yield (Proof), MPa 1200 to 1280
220 to 810

Thermal Properties

Latent Heat of Fusion, J/g 280
200
Maximum Temperature: Mechanical, °C 870
180
Melting Completion (Liquidus), °C 1460
1030
Melting Onset (Solidus), °C 1420
1010
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
110
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
26

Otherwise Unclassified Properties

Base Metal Price, % relative 16
31
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 3.5
2.9
Embodied Energy, MJ/kg 47
48
Embodied Water, L/kg 130
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
9.4 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 3610 to 4100
230 to 2970
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 47 to 53
13 to 27
Strength to Weight: Bending, points 34 to 37
14 to 23
Thermal Diffusivity, mm2/s 4.4
33
Thermal Shock Resistance, points 44 to 49
15 to 29

Alloy Composition

Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 15 to 16
0
Copper (Cu), % 0
87 to 90
Iron (Fe), % 73.2 to 77.7
0.050 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.5 to 1.3
0
Molybdenum (Mo), % 2.5 to 3.2
0
Nickel (Ni), % 4.0 to 5.0
0.050 to 0.2
Niobium (Nb), % 0.1 to 0.5
0
Nitrogen (N), % 0.070 to 0.13
0
Phosphorus (P), % 0 to 0.040
0.020 to 0.050
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
2.5 to 4.0
Zinc (Zn), % 0
5.3 to 10.4
Residuals, % 0
0 to 0.2

Comparable Variants