MakeItFrom.com
Menu (ESC)

S35500 Stainless Steel vs. C43400 Brass

S35500 stainless steel belongs to the iron alloys classification, while C43400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S35500 stainless steel and the bottom bar is C43400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14
3.0 to 49
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Shear Strength, MPa 810 to 910
250 to 390
Tensile Strength: Ultimate (UTS), MPa 1330 to 1490
310 to 690
Tensile Strength: Yield (Proof), MPa 1200 to 1280
110 to 560

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 870
170
Melting Completion (Liquidus), °C 1460
1020
Melting Onset (Solidus), °C 1420
990
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 16
140
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
32

Otherwise Unclassified Properties

Base Metal Price, % relative 16
28
Density, g/cm3 7.8
8.6
Embodied Carbon, kg CO2/kg material 3.5
2.7
Embodied Energy, MJ/kg 47
44
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180 to 190
19 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 3610 to 4100
57 to 1420
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 47 to 53
10 to 22
Strength to Weight: Bending, points 34 to 37
12 to 20
Thermal Diffusivity, mm2/s 4.4
41
Thermal Shock Resistance, points 44 to 49
11 to 24

Alloy Composition

Carbon (C), % 0.1 to 0.15
0
Chromium (Cr), % 15 to 16
0
Copper (Cu), % 0
84 to 87
Iron (Fe), % 73.2 to 77.7
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.5 to 1.3
0
Molybdenum (Mo), % 2.5 to 3.2
0
Nickel (Ni), % 4.0 to 5.0
0
Niobium (Nb), % 0.1 to 0.5
0
Nitrogen (N), % 0.070 to 0.13
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.4 to 1.0
Zinc (Zn), % 0
11.4 to 15.6
Residuals, % 0
0 to 0.5

Comparable Variants