MakeItFrom.com
Menu (ESC)

S36200 Stainless Steel vs. CC499K Bronze

S36200 stainless steel belongs to the iron alloys classification, while CC499K bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S36200 stainless steel and the bottom bar is CC499K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 3.4 to 4.6
13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 1180 to 1410
260
Tensile Strength: Yield (Proof), MPa 960 to 1240
120

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 820
170
Melting Completion (Liquidus), °C 1440
1000
Melting Onset (Solidus), °C 1400
920
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 16
73
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
12
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
12

Otherwise Unclassified Properties

Base Metal Price, % relative 12
32
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 40
51
Embodied Water, L/kg 120
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 51
27
Resilience: Unit (Modulus of Resilience), kJ/m3 2380 to 3930
65
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 42 to 50
8.1
Strength to Weight: Bending, points 32 to 36
10
Thermal Diffusivity, mm2/s 4.3
22
Thermal Shock Resistance, points 40 to 48
9.2

Alloy Composition

Aluminum (Al), % 0 to 0.1
0 to 0.010
Antimony (Sb), % 0
0 to 0.1
Arsenic (As), % 0
0 to 0.030
Bismuth (Bi), % 0
0 to 0.020
Cadmium (Cd), % 0
0 to 0.020
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 14.5
0 to 0.020
Copper (Cu), % 0
84 to 88
Iron (Fe), % 75.4 to 79.5
0 to 0.3
Lead (Pb), % 0
0 to 3.0
Manganese (Mn), % 0 to 0.5
0
Molybdenum (Mo), % 0 to 0.3
0
Nickel (Ni), % 6.5 to 7.0
0 to 0.6
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 0.010
Sulfur (S), % 0 to 0.030
0 to 0.040
Tin (Sn), % 0
4.0 to 6.0
Titanium (Ti), % 0.6 to 0.9
0
Zinc (Zn), % 0
4.0 to 6.0