MakeItFrom.com
Menu (ESC)

S36200 Stainless Steel vs. N08020 Stainless Steel

Both S36200 stainless steel and N08020 stainless steel are iron alloys. They have 59% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S36200 stainless steel and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 3.4 to 4.6
15 to 34
Fatigue Strength, MPa 450 to 570
210 to 240
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
77
Shear Strength, MPa 680 to 810
380 to 410
Tensile Strength: Ultimate (UTS), MPa 1180 to 1410
610 to 620
Tensile Strength: Yield (Proof), MPa 960 to 1240
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 280
300
Maximum Temperature: Corrosion, °C 530
490
Maximum Temperature: Mechanical, °C 820
1100
Melting Completion (Liquidus), °C 1440
1410
Melting Onset (Solidus), °C 1400
1360
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 16
12
Thermal Expansion, µm/m-K 11
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
38
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.8
6.6
Embodied Energy, MJ/kg 40
92
Embodied Water, L/kg 120
220

Common Calculations

PREN (Pitting Resistance) 15
28
Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 51
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 2380 to 3930
180 to 440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 42 to 50
21
Strength to Weight: Bending, points 32 to 36
20
Thermal Diffusivity, mm2/s 4.3
3.2
Thermal Shock Resistance, points 40 to 48
15

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.050
0 to 0.070
Chromium (Cr), % 14 to 14.5
19 to 21
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 75.4 to 79.5
29.9 to 44
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0 to 0.3
2.0 to 3.0
Nickel (Ni), % 6.5 to 7.0
32 to 38
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.3
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.035
Titanium (Ti), % 0.6 to 0.9
0

Comparable Variants